Pelajaran Soal & Rumus Geometri Jarak Titik ke Garis. Kalau kamu ingin belajar geometri jarak titik ke garis secara lebih mendalam, coba simak penjelasan yang ada di sini. Setelah menerima materi, kamu bisa langsung mempraktikkannya dengan mengerjakan latihan soal yang telah kami sediakan. Di sini, kamu akan belajar tentang Geometri Jarak Dimensi tiga tidak hanya berkaitan dengan kedudukan titik, garis, dan bidang saja, akan tetapi juga berkaitan dengan jarak titik, garis dan bidang. Penggunaan jarak titik, garis dan bidang dalam dimensi tiga akan lebih sering dikaitkan dengan bangun ruang, baik itu balok, kubus, maupun limas. Sebelum membahas lebih lanjut mengenai jarak, terlebih dahulu kita harus mengenal tentang antara sebuah titik dan sebuah garis adalah panjang ruas garis yang tegaklurus dari titik ke garis tersebut. Ilustrasi mengenai jarak titik ke garis dapat digambarkan kembali seperti berikutDi antara titik dan garis di atas dapat ditarik garis-garis yang akan digunakan untuk menentukan jarak antara titik dan garis. Misalkan ditarik 4 garis dari titik A ke garis k seperti pada gambar di atas, yaitu garis 1 – 4. Dari keempat garis tersebut, hanya ada satu garis yang berkedudukan tegak lurus terhadap garis k. Garis inilah yang merupakan garis terpendek di antara garis yang lain. Garis terpendek itulah yang merepresentasikan jarak antara titik A dan garis k pada ilustrasi di bagaimanakah menentukan jarak antara titik dan garis dalam bangun ruang?Contoh SoalMisalkan pada kubus ABCD. EFGH diketahui memiliki panjang rusuk 6 cm. Terdapat titik P tepat di tengah bidang ABCD. Tentukan jarak titik P ke ruas garis HG!JawabUntuk menentukan jarak titik P ke ruas garis HG maka ilustrasikan semua informasi yang diperoleh dari titik P pada ruas garis HG adalah titik Q, maka ruas garis PQ tegak lurus dengan ruas garis HG. Untuk mempermudah penentuan panjang PQ, proyeksikan titik Q pada ruas garis CD dan misalkan dengan titik R, sehingga terbentuk ΔPQR. Q adalah titik tengah ruas garis HG, dan R adalah titik tengah ruas garis CDJarak titik P ke ruas garis HG dapat diperoleh dengan menentukan panjang ruas garis PQ.
Jaraktitik E ke AP bisa diperoleh dengan menggunakan rumus luas segitiga EAP dengan mengambil tinggi yang berbeda. Tulisan ini terkait dengan tulisan pada kategori Latihan Soal . Oleh Opan Dibuat 25/11/2013 Seorang guru matematika yang hobi menulis tiga bahasa, yaitu bahasa indonesia, matematika, dan php.
Salam para BintangHalo semua pecinta pendidikan khususnya di bidang Matematika. Kali ini kita akan membahas materi lanjutan yaitu Jarak antara Titik dengan titik, jarak titik dengan Garis dan jarak titik dengan bidang. Nah, bagaimana cara memahaminya? Sebelumnya masuk ke materi ini wajib kalian pahami yaituJarakTitikBidang A. Jarak Titik dengan TitikJarak titikobjek ke titikobjek adalah adalah jarak terpendek yang ditarik dari kedua objek itu. Dalam geometri pun, jarak dua bangun didefinisikan sebagai panjang ruas garis terpendek yang menghubungkan dua titik pada bangun-bangun menentukan jarak antara titik dengan titik hendaknya mengingat konsep Teorema contoh berikut, agar lebih paham Pada gambar diatas yang merupakan sebuah kubus yang memiliki 8 buah titik yaitu titk A, B, C, D , E,F, G dan titik H. Jadi, Jarak antara titik dengan titik pada kubus sangat mudah kita tentukan apabila diketahui panjang rusuknya. Untuk memahaminya, perhatikan contoh soal berikutContoh 1 Diketahui sebuah kubus dengan panjang rusuk kubus adalah 5 cm. tentukanlah jarak antara titik dengan titik berikuta. Titik A ke titik Bb. Titik A ke titik Dc. Titik A ke titik Ed. Titik C ke titik Ge. Titik D ke titik Cf. Titik B ke titik CJawab Perhatikan gambar berikuta. Jarak titik A ke titik B adalah 5 cm b. Jarak titik A ke titik D adalah 5 cmc. Jarak titik A ke titik E adalah 5 cm d. Jarak titik C ke titik G adalah 5 cme. Jarak titik D ke titik C adalah 5 cmf. Jarak titik B ke titik C adalah 5 cm Contoh 2 Pada kubus dengan rusuk 8 cm terdapat titik P di tengah - tengah AB. Tentukan jarak titik G ke titik PJawab Perhatikan gambar berikutDengan mengitung dan memperhatikan apa yang diketahui, Untuk menentukan PG , maka perhatikan segitiga siku-siku PBCKemudian menentukan panjang BGKemudian kita tentukan panjang PGJadi, jarak titik G ke titik P adalah 12 cm. B. Jarak Titik dengan GarisJarak antara titik A dan ruas garis g adalah panjang ruas garis , dimana merupakan proyeksi A pada garis g Dalam menentukan jarak antara titik dengan titik hendaknya mengingat konsep Teorema contoh berikut, agar lebih paham Pada gambar diatas yang merupakan sebuah kubus yang memiliki 8 buah titik yaitu titk A, B, C, D , E,F, G dan titik H. Garis pada kubus adalah AB, BC, CD,AD, AE,BF,CG,DH,EF,FG,GH,EH, AC, BD, EG, FH, AG,BH,DF,dan CE. Jadi, Jarak antara titik dengan titik pada kubus sangat mudah kita tentukan apabila diketahui panjang rusuknya Untuk memahaminya, perhatikan contoh soal berikutContoh 3 Diketahui sebuah kubus dengan panjang rusuk kubus adalah 5 cm. tentukanlah jarak antara titik dengan garis berikuta. Titik A ke garis CDb. Titik B ke garis ADc. Titik C ke garis FGd. Titik C ke garis HGe. Titik H ke garis FGf. Titik F ke garis EHJawab Perhatikan gmbar berikuta. Jarak Titik A ke garis CD adalah 5 cmb. Jarak Titik B ke garis AD adalah 5 cmc. Jarak Titik C ke garis FG adalah 5 cmd. Jarak Titik C ke garis HG adalah 5 cme. Jarak Titik H ke garis FG adalah 5 cmf. Jarak Titik F ke garis EH adalah 5 cm Contoh 2 Pada dengan rusuk 6 cm, tentukanlah jarak titik B ke garis EGJawab Perhatikan gambar berikutPerhatikan segitiga BEG, dimana jarak B ke garis EG diwakili oleh ruas garis BP. Titik B tegak lurus dengan garis EG di titik P sehingga bisa diwakili segitiga BEP. Kemudian kita akan tentukan panjang EP dan panjang BP diperoleh dengan menggunakan rumus phytagoras diperolehJadi, jarak titik B ke garis EG adalah C. Jarak Titik dengan BidangJarak antara titik A dan bidang V adalah panjang ruas garis , dimana merupakan proyeksi A pada bidang VDalam menentukan jarak antara titik dengan bidang hendaknya mengingat konsep Teorema contoh berikut, agar lebih paham Pada gambar diatas yang merupakan sebuah kubus yang memiliki 8 buah titik yaitu titk A, B, C, D , E,F, G dan titik H. Bidang pada kubus adalah ABCD, ADHE, ABEF,BCFG,CDHG,EFGH. Jadi, Jarak antara titik dengan titik pada kubus sangat mudah kita tentukan apabila diketahui panjang rusuknya Untuk memahaminya, perhatikan contoh soal berikut Contoh 5 Diketahui sebuah kubus dengan panjang rusuk kubus adalah 5 cm. tentukanlah jarak antara titik dengan garis berikuta. Titik A ke bidang EFGHb. Titik B ke bidang CDHGc. Titik C ke bidang ABEFd. Titik C ke bidang ADHEe. Titik H ke bidang ABCDf. Titik F ke bidang ADHEJawab Perhatikan gmbar berikuta. Jarak Titik A ke bidang EFGH adalah 5 cmb. Jarak Titik B ke bidang CDHG adalah 5 cmc. Jarak Titik C ke bidang ABEF adalah 5 cmd. Jarak Titik C ke bidang ADHE adalah 5 cme. Jarak Titik H ke bidang ABCD adalah 5 cmf. Jarak Titik F ke bidang ADHE adalah 5 cmContoh 6 Pada kubus dengan rusuk 6 cm terdapat titik P ditengahtengah AE. Tentukanlah jarak titik P ke BDHFJawab Perhatikan gambar berikutDari gambar diperoleh bahwaJarak P ke bidang BDHF sama denganKarena , makaJadi, jarak titik P ke BDHF adalah Baca Juga Materi, Soal dan Pembahasan Terlengkap–Konsep Jarak garis dengan Garis-BersilanganMateri Ruang Tiga Dimensi Jarak Antara Garis dengan Bidang dan Jarak Antar Bidang dengan bidang
. 115 348 442 76 417 387 238 213

jarak titik h ke garis df